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Abstract: Agricultural monitoring is an important and continuously spreading activity in remote sensing
and applied Earth observations. It supplies valuable information on crop condition and growth processes. Much
research has been carried out on vegetation phenology issues. In agriculture, the timing of seasonal cycles of
crop activity is important for species classification and evaluation of crop development, growing conditions and
potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data
reliability require ground-truth knowledge of the seasonal spectral behaviour of different species and their relation
to crop vigour. For this reason, we performed ground-based study of the seasonal response of winter wheat
reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical
relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agro-
specific relationships allow to assess crop condition during different portions of the growth cycle and thus
effectively track plant development and make yield predictions. The applicability of different vegetation indices for
monitoring crop seasonal dynamics, health condition, and yield potential was examined.

U3BJINYAHE HA UHOOPMALUA 3A PASBUTUETO HA SUMHA NWIEHULIA
NO CE3OHHU UBMEHEHUA HA CINEKTPAITHOTO OTPAXXEHUE HA PACTEHUATA

PymaHa KbHueBa, [leHnua Bopucosa, Neopru Neoprues

UHemumym 3a KocMmuyecKu uscriedsaHusi U mexHonoauu — bbnzapcka akademuss Ha Haykume
e-mail: rumik@abv.bg, dborisova@stil.bas.bg, ggeorgie@stil.bas.bg

Knroyoeu O0ymu: 3umHa nweHuya, CriekmparsHu xapakmepucmuku, 8e2emayuoHHU UHOEKCU, Ce30HHa
OuHamuka, gheHoroaus, napamempu Ha CbCMOsIHUeMmo, NMpo2Ho3upaHe Ha dobusume

Pe3tome: MoHumopuHebm 6 Cesickomo CmMonaHCmeo € B8aXHO U WUPOKO pasnpocmpaHeHo
npusioxeHue Ha GucmaHyuoHHUMe uscredsaHusi, Koemo rnpedocmassi UeHHa UHGhopMayusi 3a CbCMOsIHUEMO Ha
rnocesume u npouyeca Ha passumuemo uM. MHoxecmeo uscredeaHusi ca MOCEEMEHU Ha B8bMPOCU Ha
geHonozusima. Cpokogeme U x00bm Ha eezemayuoHHama akmueHOCM ca 8aXHU pu U3Mon38aHemo Ha
AucmaHyuoHHU daHHU 3a Kracugbukayusi Ha Kynmypume, 3a OUeHKa Ha msxHoOmo passumue, ycrosusma Ha
omenexdaHe u nomeHyuanHus dobus. lNpasunHama uHmMeprnpemayuss Ha OaHHUMe om JAucmaHUUOHHUME
uscnedeaHusi, KakKmo U U3UCK8aHemo 3a Mo-eonsMa Halexo0Hocm Ha uHgopmayusma, Hamazam nodpobHO
Ha3eMHO u3yyasaHe Ha ce30HHama OUHaMUKa Ha CriekmpasHume Xxapakmepucmuku Ha pasfiuyHume Kynmypu u
ycmaHossieaHe Ha epb3kama UM CbC CbCMOSIHUemMO Ha nocesume. [lopadu ma3u npuduHa ca nposedeHu
ronesu ekcriepumeHmu, 4pe3 koumo 0a ce npocredu ce3oHHUs X00 Ha 6uoghuauyHUMe U criekmpanHume
ompaxxameJsiHu xapakmepucmuku Ha 3uMHa nweHuya. Llenma e da ce uscnedsam u onuwam KosudecmeeHume
8pBb3KU Mexdy 6uomMempuyHUmMe napamempu U CriekmpanHume ceolicmea Ha ocesume 8 pasfuyHU
gpeHonozuYHU hasu Ha pazsumue. Tesu 3agucuMocmu r103680/1s98am oueHKa Ha CbCMOSHUemMo Ha pacmeHusima
8 pas/nuyHu nepuodu Ha eezemauusi, Koemo ocuaypsiea eghekKmusHo npocriedsisaHe Ha Ce30HHama OuHaMuKa Ha
pacmexa u no-20s1siMa MoO4YHOCM Ha rpozHo3upaHusi dobus.

Introduction

The rapid advances of space technologies concern almost all scientific areas from aeronautics
to medicine and a wide range of application fields from communications and hazard warning to crop
yield prediction. Without a doubt, vegetation monitoring is the most essential application of remote
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sensing techniques. Vegetation plays a vital role in Earth’s hydrological, biogeochemical, and
ecological processes and helps in maintaining the balance of the carbon-dioxide level in nature.
Remote sensing is an accepted source of information in environmental studies for ecosystems change
detection, natural resources management, environment preservation and other problems of global
importance.

Agriculture is a continuously spreading application area of remote sensing. Within Earth
observation activities, agricultural monitoring supplies information on crop performance. Agricultural
remote sensing involves characterization of plant canopies through multispectral and multitemporal
measurements. Spectral response data collected over vegetative targets are analyzed to derive
information on plant growth stage and physiological condition. Mapping farm-land use, crop area
estimates, and spatial and temporal distributed information on crop development are preconditions for
improving the efficiency of agricultural policies and management. This is especially important in the
context of site-specific precision agriculture running. Remote sensing is a major source of relevant
data. Monitoring agricultural fields during the growing season plays a significant role in precision
farming [1, 2] provided that reliable phytodiagnostics is obtained. Regular and timely information is
needed for tracking plant phenological development [3-5], evaluating the growth process [6, 7], and
assessing crop health [8-11] in order to adjust farmland management and make yield predictions at
different scales [12-16]. Particular efforts are put into the elaboration of methods for assimilation of
remote sensing data of high spatial-temporal resolution in agronomical models [14, 17-19] to produce
information needed in agricultural practice. Various data and data processing algorithms are applied to
provide quantitative crop information. The acquired multispectral data are especially effective in
deriving crop biophysical parameters used in growth models. A large amount of work has been
published on the derivation of vegetation biomass, leaf area index and chlorophyll content from optical
data [2, 6, 7, 20-22].

Much research is carried out on vegetation phenology issues. Phenology studies have many
aspects. They are related to using remotely sensed data for phenology monitoring [23, 24],
assessment of vegetation types distribution [25, 26], ecosystems forecasting [27], quantifying the
carbon budget [28], evaluation of year-to-year spatial and temporal variations of vegetation
seasonality, and the dependence of these variations on environmental factors [29, 30]. Knowledge of
phenology and taking into account phenological events are crucial elements in vegetation data
interpretation. In agricultural remote sensing observations, the timing of seasonal cycles of crop
activity is important for species classification [31], evaluation of plant development and growing
conditions, identifying stresses, and evaluating potential yield.

However, the use of airborne and satellite data in agricultural monitoring requires detailed
knowledge of species spectral behaviour under different conditions. For this reason, ground-based
empirical studies complement the vast array of geo-spatial data products providing a reference data
source and being associated with site-specific conditions. All the more so since data integration and
sharing between different sources has become recently a leading concept [32] in remotely sensed
data application and an answer to the question about the reliability of data interpretation results.
Ground-based studies are an appropriate way of aiding and verifying the interpretation of remotely
sensed data and a tool for validation of data processing and retrieval algorithms. Entering wider into
their operational stage, remote sensing technologies face higher requirements to the accuracy of the
information they provide. Because of this raising need, ground-based observations are considered one
of the pillars of remote sensing observations. In-situ spectral modeling activities [33-36] are an integral
part of remote sensing technologies. In vegetation studies, especially advantageous is the ability to
vary and control the experimental conditions getting a precise picture of plant spectral response to
different factors (species type, soil background, agricultural practices, stress impacts, etc.) as well as
to track in detail the temporal behaviour of plant spectral properties during the ontogenetic cycle.

In the context of all this, our paper is devoted to in-situ observations of crop spectral response
during plant growth and the performance of ground-derived spectral-biophysical relationships for the
retrieval of crop canopy variables and yield prediction from multispectral and multitemporal data.

Materials and methods

The correct interpretation of remote sensing data along with the increasing demand for high
reliability of the derived information require precise ground-truth study of the seasonal performance of
different species, knowledge of the phenology-resolved behaviour of their spectral response and the
relationship of species seasonal spectral patterns with crop vigour and productivity. For this reason,
we conducted ground-based field and greenhouse experiments with the intention to investigate the
multispectral response of winter wheat at different phenological stages and to relate reflectance
patterns to crop seasonal development and yield. The focus of the work was on quantifying crop
seasonality by establishing empirical relationships between plant biophysical and spectral properties in
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different periods during the ontogenetic process. Both, growth variables and spectral-temporal
response, strongly depended on crop phenology and condition.

The application of different nitrogen rates and fertilization forms as well as different water
supply ensured varying growing conditions and provided for a wide range of crop performance by
affecting plant vigour during the phenological development. All treatments were planted on the same
date and replicated twice. Whole-season measurements of canopy reflectance were carried out with a
multichannel spectrometer in the visible and near infrared region (400 to 820 nm). Multispectral data in
43 narrow wavebands were acquired at weekly intervals starting from emergence to full physiological
maturity and harvest (Figure 1). Concurrent measurements of crop biophysical parameters were
performed. They were recorded per unit area basis and comprised: vegetation canopy fraction (C),
leaf area index (LAIl), plant height (H, m), stem number (N), total above-ground and leaf biomass
(kg/mz): fresh (My, M,) and dry (Mg, Myg), chlorophyll concentration (Chl), and grain yield (Y, kg/m?). In
addition, precise characterization of crop phenological events was made.

Stem extension Heading Ripening
jointing booting [flowering

—

earring

Tillering
s

Fig. 1. Winter wheat growth stages: emergence, tillering, stem elongation (jointing, booting),
heading (earring, flowering), ripening (milk, dough, and full physiological maturity)

Spectral and growth data were gathered throughout the entire growing cycle 2-3 times per
each phenological stage. Due to the sampling number in terms of frequency and replicates available,
and the samples variation range in terms of crop condition, the collected datasets had an amount and
a range width sufficient to process them in a statistically meaningful way. Canopy spectral behaviour
as a function of plant condition and phenology was statistically related to crop growth variables and
yield using single-date data or datasets referring to a whole phenophase (see Fig. 1).

The measured spectral signatures were analyzed by employing vegetation indices (VIS).
Various VIs were calculated from reflectance data and related to crop condition-indicative variables.
We chose to present here mainly results of using ratio indices which exploit the contrasting high and
low reflectance in specific for vegetation spectral bands. This choice was prompted by the most
common implementation of various ratio indices and the possibility the obtained results to be
compared with the results of other studies. The performance of VIs as spectral predictors of crop
biophysical parameters and yield was examined. Their capability to effectively monitor plant
development, to distinguish health condition and associate it with yield was assessed.

Results and discussion

Spectral data, growth patterns and yield showed variation between the trials due to the
different treatment. Our purpose, however, was not to discriminate between the impact of the growing
conditions, but to obtain spectral predictors of crop performance. The biophysical and multispectral
measurements were used to examine by correlation analysis and describe by simple regression
analysis the following relationships: first, physiological relationships - between crop growth variables,
and between them and yield; second, spectral-biophysical relationships - between canopy spectral
patterns, growth variables and yield.

In Table 1 and Table 2 results of the correlation analysis between winter wheat growth
parameters at four phenological stages are presented as well as their correlation with yield. The
strength of correlation between the examined variables revealed dependence on plant phenology and
depicted crop physiological development and morphological changes. The correlation was higher in
the periods of most intensive vegetative growth and at early reproductive stages before full maturity.
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Table 1. Linear correlation coefficients of winter wheat growth variables and yield
at tillering (up right) and heading (down left) stages

C N H LAI Mw My M. Mud Y
C 0.9 069 096 093 073 098 098 0091
N 0.86 0.67 092 087 076 088 0.85 0.93
H 0.86 0.62 0.72 063 073 0.72 0.68 0.71
LAl | 0.96 0.83 0.82 086 064 096 095 0.94
Mw | 096 089 0.8 0.97 0.88 095 095 0.87
Mg | 092 071 086 091 0.98 075 0.74 0.75
M. | 094 088 077 094 098 0.85 099 09
Mg | 082 08 084 076 074 0.9 0.68 0.88
Y 094 083 091 092 0.9 086 0.83 0.84

Table 2. Linear correlation coefficients of winter wheat growth variables and yield
at booting (up right) and milk ripeness (down left) stages

C N H LAI Mw Mg My Mg Y

C 0.89 096 0.89 093 087 091 094 0.95
N 0.64 076 076 087 0.77 089 087 0.79
H 0.92 0.62 092 09 091 084 092 0.96
LAl | 0.88 0.72 0.91 096 093 092 096 0.89
Mw | 0.81 0.77 0.89 0.93 093 097 098 0.9
Mg | 0.77 0.73 085 088 0.98 085 096 0.84
M. | 084 064 09 098 09 084 094 0.87
Mg | 0.85 064 091 099 095 0.89 0.99 0.88
Y |08 076 089 09 086 087 084 0.86

Agricultural species are dynamic systems whose bioparameters change during plant growth.
For this reason, the empirical modeling was performed at different stages of the phenological
development. Single-date, phenophase-relevant and time-series spectral patterns were attributed to
the set of crop variables. Some of the obtained relationships between winter wheat growth parameters
are presented in Table 3. As it can be seen, high correlations existed at vegetative, reproductive and
early maturation stages. With further maturing the relations weakened or became negligible.

Table 3. Linear relationships between winter wheat biophysical parameters
as dependent on plant advanced growth

predictor | variable a b R? predictor variable a b R?

tillering booting

C Mw -0.327 2.29 0.86 C Mw -0.073 2.007 0.86

C M, -0.119 1.918 0.96 C M, -0.042 0.999 0.83

Mw LAI -0.678 1.209 0.74 My LAI 0.031 2.694 0.92

M, Y 0.078 0.401 0.76 C Y 0.024 0483 0.9
heading milk ripeness

C Mw 0.298 4.067 0.92 C Mw -0.07 4.296 0.66

C M. 0.198 0.478 0.88 C My -0.024 0.495 0.71

My LAI 0.058 1.211 0.94 My LAI 0.016 0.611 0.86

M, Y 0.072 0.843 0.87 C Y 0.019 0.497 0.88

The varying values of the regression parameters depicted crop dynamics during the
physiological development. Thus, different slopes and correlation strength of the relationship between,
for instance, LAl and the total biomass reflected LAl increase during the most active vegetative
periods and its decrease with plant maturing and leaf senescence. Plant biomass, dry matter
accumulation, leaf area index and canopy density are key parameters for assessing crop condition
and productivity. The temporal patterns of these variables characterize not only crop phenological
development but are as well indicators of plant health condition. Crop condition is assessed by
evaluating the stage-specific values of growth variables and comparing them to a certain criterion in
absolute terms or on a relative basis. Biophysical relationships can serve for verification of vegetation
parameters retrieval and yield predictions from remote sensing spectral data.
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Vegetation indices (VIs) are routinely used to monitor spatial and temporal changes in
vegetation performance. The most common VIs are normalized differences (NDVI) utilizing visible and
infrared spectral bands, and diverse ratio indices. We examined a big number of VIs for the strength
of their correlation with plant growth variables. The formulae of some of them (mainly in the form of
two or three-band combinations) that produced highest degree of correlation are presented in Table 4.
The spectral indices were statistically related to crop canopy fraction, leaf area index, total and leaf
fresh and dry biomass, crop density, plant chlorophyll, and grain yield. Strong correlation with spectral
indices derived from the green (G=550 nm), red (R=670 nm) and near-infrared (NIR=800 nm)
reflectance factors were observed (Table 4 and Table 5). Crop spectral response at different
phenological stages was found to be sensitive to the variations of the growth variables that
characterized plant vigour and seasonal development.

Table 4. Correlation between vegetation indices and winter wheat growth variables and yield of at heading stage

No Vi C N H LAI Mw My M. Y

1 (NIR-R)/(NIR+R) 0.95 |0.86 |0.93 |0.93 |0.88 |0.80 |0.87 |0.96
2 NIR/R 0.97 [0.92 |0.93 |0.95 |0.94 |0.84 [0.92 [0.94
3 G.NIR/R 0.84 [0.60 |0.54 |0.81 |0.70 |0.52 [0.78 |0.72
4 (NIR-G)/(NIR+G) 0.88 |0.89 |0.92 |0.91 |0.91 |0.85 |0.92 | 0.9

5 NIR/G 0.97 |0.95 |0.75 |0.98 |0.96 |0.88 |0.98 |0.92
6 (NIR-R)/NIR 0.79 |0.80 |0.96 |0.81 |0.82 |0.76 |0.82 | 0.9

7 (G-R)IG 0.87 [0.82 |0.85 |0.85 |0.85 |0.75 [0.85 |0.83
8 (NIR-G)/NIR 0.83 [0.85 |0.95 |0.86 |0.87 |0.81 [0.87 |0.86
9 NIR/(G+R) 0.99 |0.95 |0.74 |0.98 |0.96 |0.87 |0.99 |0.96
10 | R/(NIR+G) -0.83 |-0.83 |-0.94 |-0.84 |-0.86 |-0.78 [-0.85 |-0.83
11 | (G-R)/(G+R) 0.89 [0.82 |0.80 |0.85 |0.85 |0.74 [0.85 |0.79
12 | G/IR 0.89 [0.80 |0.73 |0.85 |0.83 |0.71 [0.84 |0.82
13 | NIR/(G.R) 0.90 |0.94 |0.65 |0.89 |0.95 |0.94 |0.93 |0.77
14 | G/(G+R+NIR) -0.94 |-0.93 |-0.85 |-0.95 |-0.95 |-0.88 [-0.96 |-0.93
15 | R/(G+R+NIR) -0.88 |-0.86 (-0.92 (-0.88 |-0.89 |-0.81 |-0.88 | -0.8
16 | NIR/(G+R+NIR) 0.91 |0.90 |0.90 |[0.92 |0.92 (0.84 [0.92 [0.94
17 | (NIR-G)/R 091 |0.82 |0.82 |0.95 |0.94 |0.75 |0.85 |0.86
18 | [(G-R)/(G+R)+0.5]"° 0.88 |0.82 |0.82 |0.85 |0.85 |0.75 |0.85 |0.72
19 | [(NIR-R)/(NIR+R)+0.5]°° |0.83 |0.84 |0.94 |0.85 |0.86 [0.79 |0.85 |0.92
20 | [(NIR-G)/(NIR+G)+0.5]>° |-0.87 |-0.88 |-0.93 |-0.89 |-0.90 |-0.83 |-0.90 |-0.83

Table 5. Correlation between vegetation indices and winter wheat growth variables and yield
at milk ripeness stage

VI C N H LAI Mw Mq ML Y
1| 094 | 089 0.95 0.92 0.81 0.78 | 0.71 | 0.93
2 | 0.97 0.93 0.82 0.93 0.95 090 | 097 | 0.91
4 | 0.88 0.71 0.88 0.92 0.90 0.88 | 0.94 | 0.89
5 | 0.86 0.95 0.70 0.85 0.89 084 | 094 | 0.87
6 | 094 | 0.84 0.86 0.87 0.86 084 | 0.74 | 0.94
8 | 0.81 0.71 0.87 0.92 0.85 0.83 | 092 | 0.87
9 | 095 | 0.79 0.93 0.98 0.94 0.89 | 095 | 0.93
10 | -0.93 | -0.83 | -0.84 | -0.84 | -0.84 | -0.83 | -0.71 | -0.86
12

13

14

16

17

0.86 0.77 0.71 0.71 0.74 0.72 | 0.73 | 0.81
0.77 0.78 0.78 0.84 0.64 0.8 0.84 | 0.79
-0.70 | -0.83 | -0.79 | -0.89 | -0.76 | -0.73 | -0.90 | -0.78
0.95 | 0.83 0.93 0.96 0.93 0.90 | 0.90 | 0.95
0.93 0.85 0.87 0.95 0.92 0.88 | 095 | 0.93
19 | 0.93 0.83 0.84 0.84 0.84 083 | 0.71 | 0.92

Subsequently, in order to quantitatively link spectral indicators to crop state-indicative
parameters regression analysis was run over the datasets. Through simple regression, each
vegetation index was related to each crop growth variable. The regression results for most of the
examined VIs produced well-fitting models with predicted values close to the observed data values.
This is illustrated by Figure 2a and Figure 2b where LAl empirical models derived from spectral
reflectance data at two phenological intervals are presented. Figure 2c and Figure 2d shows the good
correspondence between LAl predicted (estimated from the regression fits) and actual (measured)
values. LAI is an essential descriptor of wheat canopies. As illustrated, it can be reliably estimated
from multispectral data provided that phenology is taken into account. The same refers to other
essential crop parameters such as canopy cover, and total and leaf biomass. The analysis of the
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acquired spectral data showed that VIs were confidently related to plant variables through the bigger
portion of the growing season before advanced maturity. The obtained empirical equations for some
vegetation indices and crop yield and biophysical variables at earring stage are given in Table 6.
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Fig. 2. VI (a) and VI, (b) as spectral predictors of LAI for pre-heading (e) and post-heading () period;
correspondence of LAl actual and predicted values: by VI, for both periods (c),
and by VI (e) and VI, (%) at pre-heading (d)

Table 6. Empirical relationships of VIs with crop variables and yield at earring stage

VI | variable | model a b R? VI | model a b R?
1 C atbx | -0.531 | 1.563 | 0.93 | 9 | atbx -0.1 0.243 | 0.91
My e | -1.252 | 3.123 | 0.9 a+bx -0.92 1.22 | 0.94
LAI X -1.72 | 3.675 | 0.86 a+tbx | -1.592 | 1.087 | 0.91
Y at+bx | -0.373 | 1.058 | 0.9 a+bx | -0.054 | 0.131 | 0.9
2 C a+tbx | 0.062 | 0.077 | 0.88 | 14 | a+bx 1.816 | -7.34 | 0.87
My atbx | -0.493 | 0.441 | 0.95 a+bx 7.842 | -30.3 | 0.9
LAI atbx | -0.421 | 0.386 | 0.93 a+bx 3.807 | -14.9 | 0.91
Y a+bx | -0.006 | 0.047 | 0.89
4 C a+bx | -0.588 | 1.813 | 0.81 | 16 | a+bx | -1.173 | 2.426 | 0.91
Muw a+bx | -5.928 | 13.08 | 0.82 a+bx | -9.003 | 15.87 | 0.88
LAI atbx | -5.66 | 12.22 | 0.88 atbx | -8.449 | 14.7 | 0.93
Y a+bx | -344.9 | 1018 | 0.83 a+tbx | -0.856 | 1.616 | 0.91
5 C at+bx | -0.205 | 0.162 | 0.84 | 17 | a+bx 0.074 | 0.094 | 0.88
My a+bx | -1.506 | 0.827 | 0.91 a+tbx | -0.079 | 0.476 | 0.95
LAI atbx | -1.385 | 0.74 | 0.91 a+tbx | -1.385 | 0.74 | 0.91
Y at+bx | -0.039 | 0.052 | 0.88 a+bx 0.039 | 0.050 | 0.88

The seasonal performance of VIs was a function of plant condition and growth stage.
Examples of time-series VIs patterns of winter wheat trials are shown in Figure 3 for NDViyrr (V1)
and the simple ratios NIR/G (VIs) and R/700 nm. These multitemporal profiles contain data from
emergence to ripening and full maturity taken on 13 dates during the growing season. They tracked
crop phenological development and distinctly monitored the temporal deviations in plant condition
throughout the season. VIs temporal behaviour varied significantly between the trials depending on
crop vigour. This provided for reliable discrimination between crop conditions during the season. Plant
development rates and stages duration could also be distinguished from Vs profiles. The most
pronounced amplitude differences were observed for mid-season values around heading. All trials
showed uni-modal temporal spectral response during plant development. The temporal VIs curves had
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a bell (Figure 3a and Figure 3b) or bowl (Figure 3c) shape depending on the positive or negative
correlation with plant growth variables. Bell-shaped and bowl-shaped pattern could be found in the
blue, red and NIR wavebands.
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Fig. 3. Seasonal patterns of winter wheat vegetation indices:
a— NDVInirr (Vl1),b = NIR/G (VIs), ¢ — 670 nm/700 nm

Besides monitoring pant growth performance, VIs was suitable for yield forecasts being
strongly correlated with the grain yield within plant active growth and early reproductive periods.
Figure 4a shows yield spectral models fitted from VI, and VI, values at heading stage. Verification of
yield spectral predictions was performed through phisiological yield models linking yield to crop growth
variables. Figure 4b presents the derived linear dependences of winter wheat grain yield on LAl values
at two phenological stages. At later stages and higher LAI this relationship tends to curvilinear.
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Fig. 4. Winter wheat yield prediction models: from VI; () and VI, (e) values at heading stage (a);
from LAl values at stem elongation (A) and early-heading (~) stages (b)

Accumulated VIs values (temporal sums) during different growth periods produced high
correlations with crop yield. Regression analysis between VIs temporal sums (ZVI) and yield was
performed to fit the empirical equations. Linear models with good statistical confidence were derived for the
entire season sums as well as for different time intervals. Best performed in terms of yield prediction VI 1, 2,
4,11, 13, 15 and 16. The R* values of their relationship with grain yield were above 0.9 (Table 7).

Table 7. Linear yield prediction models
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Fig. 5. Winter wheat yield prediction models from
VI; half-season (e) and whole-season (A)
temporal sums
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In Figure 5 the derived spectral models for yield prediction from VI, half-season and whole-
season sums are plotted. The integrated during plant growth VIs values proved to be a reliable yield
prediction tool. The important point is that partial-season predictors also gave good results showing
almost equally close relation with crop yield. This fact provides for early yield forecasts before the end
of season.

Conclusions

The performance of various vegetation indices for monitoring crop seasonal dynamics,
condition, and yield potential was examined. The temporal behaviour of vegetation indices revealed
increased sensitivity to crop growth. The derived spectral-biophysical relationships allowed extraction
of quantitative information about crop variables and yield at different stages of the phenological
development. Relating plant spectral and biophysical variables in a phenology-based manner allows
crop monitoring, that is crop diagnosis and predictions to be performed multiple times during plant
ontogenesis. During active vegetative periods spectral data was highly indicative of plant growth
trends and yield potential. The temporal sums of VIs values contributed to reliable yield prediction and
showed very good correspondence with the estimates from biophysical models. For dates before full
maturity most of the examined VIs proved to be meaningful statistical predictors of crop state-
indicative biophysical variables. High correlations were obtained for canopy cover fraction, LAI, and
biomass. Sensitivity to red, near-infrared and green reflectance showed both vigorous and depressed
plants. As crops attained advanced growth stages, decreased sensitivity of VIs and weaker
correlations with bioparameters were observed, yet still significant in a statistical sense. The results
highlight the capability of the presented approach to track the dynamics of crop growth from time-
resolved and time-integrated spectral data, and illustrate the prediction accuracy of the spectral
models. The results of this paper may be useful in assessing the efficiency of various spectral band
ratios and other vegetation indices often used in remote sensing studies of natural and agricultural
vegetation. They suggest that the algorithm is particularly suitable for airborne cropland monitoring
and could be expanded to similar sites at local or regional scale.
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